Abstract

BackgroundThe lignocellulose biorefinery based on the sugar platform usually focuses on polysaccharide bioconversion, while lignin is only burned for energy recovery. Pyrolysis can provide a novel route for the efficient utilization of residual lignin obtained from the enzymatic hydrolysis of lignocellulose. The pyrolysis characteristics of residual lignin are usually significantly affected by the pretreatment process because of structural alteration of lignin during pretreatment. In recent years, biological pretreatment using white-rot fungi has attracted extensive attention, but there are only few reports on thermal conversion of lignin derived from enzymatic hydrolysis residue (EHRL) of the bio-pretreated lignocellulose. Therefore, the study investigated the pyrolysis characteristics and kinetics of EHRL obtained from bamboo pretreated with Echinodontium taxodii in order to evaluate the potential of thermal conversion processes of EHRL.ResultsFourier transform infrared spectroscopy spectra showed that EHRL of bamboo treated with E. taxodii had the typical lignin structure, but aromatic skeletal carbon and side chain of lignin were partially altered by the fungus. Thermogravimetric analysis indicated that EHRL pyrolysis at different heating rates could be divided into two depolymerization stages and covered a wide temperature range from 500 to 900 K. The thermal decomposition reaction can be well described by two third-order reactions. The kinetics study indicated that the EHRL of bamboo treated with white-rot fungus had lower apparent activation energies, lower peak temperatures of pyrolysis reaction, and higher char residue than the EHRL of raw bamboo. Pyrolysis–gas chromatography–mass spectrometry (Py–GC/MS) was applied to characterize the fast pyrolysis products of EHRL at 600 ℃. The ratios of guaiacyl-type to syringyl-type derivatives yield (G/S) and guaiacyl-type to p-hydroxy-phenylpropane-type derivatives yield (G/H) for the treated sample were increased by 33.18 and 25.30 % in comparison with the raw bamboo, respectively.ConclusionsThe structural alterations of lignin during pretreatment can decrease the thermal stability of EHRL from the bio-treated bamboo and concentrate the guaiacyl-type derivatives in the fast pyrolysis products. Thus, the pyrolysis can be a promising route for effective utilization of the enzymatic hydrolysis residue from bio-pretreated lignocellulose.

Highlights

  • The lignocellulose biorefinery based on the sugar platform usually focuses on polysaccharide bioconversion, while lignin is only burned for energy recovery

  • Structural characterization of lignin derived from hydrolysis residue Fourier transform infrared spectroscopy (FTIR) analysis was used in the characterization of enzymatic hydrolysis residue (EHRL) of bamboo pretreated with E. taxodii

  • The EHRL of bamboo treated with whiterot fungus has different pyrolysis characteristics from natural bamboo lignin because of the structural alterations of lignin during pretreatment

Read more

Summary

Introduction

The lignocellulose biorefinery based on the sugar platform usually focuses on polysaccharide bioconversion, while lignin is only burned for energy recovery. Biological pretreatment using white-rot fungi has attracted extensive attention, but there are only few reports on thermal conversion of lignin derived from enzymatic hydrolysis residue (EHRL) of the bio-pretreated lignocellulose. Traditional industrial processes for sugar platform biorefinery usually focus on the bioconversion of polysaccharides in the lignocellulosic biomass, including pretreatment, enzymatic saccharification, and fermentation to ethanol or other bio-chemicals, while lignin in the enzymatic hydrolysis residue is only burned to generate the power required in the production [3]. The pyrolysis of lignin derived from enzymatic hydrolysis residue may be distinctly different from that of natural lignin because the chemical and physical structure of lignin can be altered significantly by the pretreatment process which is a conventional method to make the cellulose more accessible to enzymatic hydrolysis during lignocellulose bioconversion [15]. There are few reports on thermal conversion of lignin derived from enzymatic hydrolysis residue after fungal pretreatment

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call