Abstract

Pyrolysis characteristics and mechanism of tobacco stem were studied by pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS), thermogravimetric analyzer coupled with Fourier transform infrared spectrometry, and mass spectrometry (TG-FTIR and TG-MS) techniques. The composition of evolved volatiles from fast pyrolysis of tobacco stem was determined by Py-GC/MS analysis, and the evolution patterns of the major products were investigated by TG-FTIR and TG-MS. Py-GC/MS data indicated that furfural and phenol were the major products in low temperature pyrolysis, and these were generated from depolymerization of cellulose. Indene and naphthalene were the major products in high temperature pyrolysis. TG-FTIR and TG-MS results showed that CO, CO2, phenols, aldehydes, and ketones were released between 167oC and 500oC; at temperatures >500oC, CO and CO2 were the main gaseous products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call