Abstract

In this study, the pyrolytic behaviors and the thermal-oxidation decomposition characteristics of organic carbon (OC), pyrolytically generated elemental carbon (PEC) and black carbon (BC) particles have been studied in inert and air atmosphere respectively, in order to develop a new PEC correction method for the determination of BC by using thermal oxidation method. Our results indicated that: 1) a part of OC can be removed by heating it at 400 °C in inert atmosphere and another part of OC was charred to form PEC, whereas, the weight of BC particles approximately keeps no change in the same conditions. 2) PEC and BC began to decompose at a similar temperature in air atmosphere. However, the decomposition rate of PEC is quite different from that of BC in air atmosphere and the difference varied with the temperature. As maximum, the decomposition rate of PEC is 5.64 times faster than that of BC particles at 500 °C in air atmosphere. Based on the difference of the decomposition rate between PEC and BC, a new method of PEC correction was developed for the thermal oxidation method. With the help of the new PEC correction method and thermal analyzer, we successfully determined OC and BC concentrations in actual soot sample and artificial soot samples. The results obtained with our PEC correction method are consistent well with the real value or those analyzed with thermal-optical method, suggesting that the novel PEC correction method have a high accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.