Abstract

Several on-line chemical reactions have been combined with Py-GC-MS to improve the chromatographic behaviour of polar pyrolysis products. Derivatisations, principally methylation and silylation, have been widely employed to the analysis of oxygenated pyrolysis products, while the conversion of nitrogen-containing compounds resulted more challenging. The present study shows that amines can be efficiently converted into the corresponding N-substituted amides (acetamides) by conducting pyrolysis in the presence of acetic anhydride (PyAc). PyAc was assessed on three common N-containing polymer families, polyethylenimine (PEI, linear and branched), polyurethane (PUR, based on the methylenediphenyl diisocianate monomer) and nylons (polyamide PA6 and PA66). Upon PyAc, PEI produced a series of N-methyl, ethyl, ethenyl acetamides indicative of the formation of several alkylated monoamines that were more difficult to detect in the free form by conventional Py-GC-MS. Acetyl derivatives of linear acyclic polyamines and piperazines were also identified confirming previous investigations. In the case of PUR, the acetylated 4,4′-diaminodiphenylmethane was generated along with the diisocyanate monomer. PyAc of PA66 produced the acetyl derivative of 1,6-hexyldiamine, while the caprolactam of PA6 was only partially acetylated. The effectiveness of acetylation was confirmed by PyAc of calibration standards for microplastic analysis. Besides the acetylated amines distinctive of PUR and PA66, the acetylated forms of 1,4-butandiol from PUR and bisphenol A from polycarbonate were detected. The results showed the potential of extension of PyAc to other polymer families and highlighted some weaknesses to be solved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.