Abstract

The accumulation of amyloid-beta (Aβ) peptides is believed to be a central contributor to the neurodegeneration typically seen in Alzheimer's disease (AD) brain. Aβ extracted from AD brains invariably possesses extensive truncations, yielding peptides of differing N- and C-terminal composition. Whilst Aβ is often abundant in the brains of cognitively normal elderly people, the brains of AD patients are highly enriched for N-terminally truncated Aβ bearing the pyroglutamate modification. Pyroglutamate-Aβ (pE-Aβ) has a higher propensity for oligomerisation and aggregation than full-length Aβ, potentially seeding the accumulation of neurotoxic Aβ oligomers and amyloid deposits. In addition, pE-Aβ has increased resistance to clearance by peptidases, causing these peptides to persist in biological fluids and tissues. The extensive deposition of pE-Aβ in human AD brain is under-represented in many transgenic mouse models of AD, reflecting major differences in the production and processing of Aβ peptides in these models compared to the human disease state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.