Abstract

Pyrochlore-free Pb(Mg 1/3Nb 2/3)O 3 (PMN) powders were successfully synthesized by the partial oxalate (PO) method using a high reactive MgNb 2O 6 (MN) precursor powder synthesized by the polymerized complex (PC) method. Raman spectroscopy, X-ray diffraction and nitrogen gas adsorption/desorption isotherms were used to characterize the MN precursor. No evidence of impurities in the MN precursor was found. Lead oxalate synthesized in situ was precipitated onto the surface of MN nanoparticles. The material was filtered, washed and calcined at different temperatures, from 700 to 1000°C, in air for 2 h to obtain the PMN phase. Thermal analysis, X-ray diffraction and nitrogen adsorption/desorption hysteresis were used to investigate the PMN perovskite phase evolution and the presence of the pyrochlore phase. PMN formation is a function of the time and temperature conditions of the precipitate calcination, and an optimum condition for the thermal decomposition of the precipitate was determined to avoid the formation of the pyrochlore phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.