Abstract

Two kinds of pyrocatechols, pyrocatechol (CL) and nitropyrocatechol (NCL), were chosen by the conductive value change (Δ) they cause in the boric acid-polyol solutions, and corresponding modified resins (CL-RESIN and NCL-RESIN) were synthesized by new methodology for effective boron removal and isotopic separation. The optimized boron adsorption occurs at pH=9.06 for CL-RESIN, and pH=6.70 for NCL-RESIN, with the maximum adsorption capacity 0.7886mmol·g−1 and 0.7931mmol·g−1, which were comparable to commercial IRA 743. Boron adsorption on prepared resins was saturated within 12h and can be well described by pseudo-second-order kinetic model. Freundlich isotherm model fits well at low boron concentration while Langmuir isotherm model fits better at high concentration. Furthermore, the boron isotopic separation factors S on two prepared resins are 1.080 for CL-RESIN and 1.140 for NCL-RESIN, which are far higher than all previous results. Boron removal and isotopic separation capacities make it possible that three problems, boron removal, isotopic separation and boron reusability, can be addressed in single adsorption process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call