Abstract
The origin of coal worker's pneumoconiosis (CWP) has been long debated. A recent epidemiological study shows a correlation between what is essentially the concentration of pyrite within coal and the prevalence of CWP in miners. Hydrogen peroxide and hydroxyl radical, both reactive oxygen species (ROS), form as byproducts of pyrite oxidative dissolution in air-saturated water. Motivated by the possible importance of ROS in the pathogenesis of CWP, we conducted an experimental study to evaluate if ROS form as byproducts in the oxidative dissolution of pyrite in simulated lung fluid (SLF) under biologically applicable conditions and to determine the persistence of pyrite in SLF. While the rate of pyrite oxidative dissolution in SLF is suppressed by 51% when compared to that in air-saturated water, the initial amount of hydrogen peroxide formed as a byproduct in SLF is nearly doubled. Hydroxyl radical is also formed in the experiments with SLF, but at lower concentrations than in the experiments with water. The formation of these ROS indicates that the reaction mechanism for pyrite oxidative dissolution in SLF is no different from that in water. The elevated hydrogen peroxide concentration in SLF suggests that the decomposition, via the Fenton mechanism to hydroxyl radical or with Fe(III) to form water and molecular oxygen, is initially inhibited by the presence of SLF components. On the basis of the oxidative dissolution rate of pyrite measured in this paper, it is calculated that a respirable two micron pyrite particle will take over 3years to dissolve completely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.