Abstract
Detection of minor DNA allele alterations is becoming increasingly important for early detection and monitoring of cancer. We describe a new method that uses ultraviolet light to eliminate wild-type DNA alleles and enables improved detection of minor genetic or epigenetic changes. Pyrimidine-dependent UV-based minor-allele enrichment (PD-UVME) employed oligonucleotide probes that incorporated a UVA-sensitive 3-cyanovinylcarbazole (CNVK), placed directly opposite interrogated pyrimidines, such as thymine (T) or cytosine (C) in wild-type (WT) DNA. Upon UVA-illumination, CNVK cross-linked with T/C, preventing subsequent amplification. Mutations that removed the T/C escaped cross-linking and were amplified and detected. Similarly, CNVK discriminated between methylated and unmethylated cytosine in CpG dinucleotides, enabling direct enrichment of unmethylated DNA targets. PD-UVME was combined with digital droplet PCR (ddPCR) to detect serine/threonine-protein kinase B-Raf (BRAF) V600E mutations in model systems, thyroid patient cancer tissue samples, and circulating DNA of tumor origin (ctDNA) from melanoma patients. One thyroid cancer sample out of 9, and 6 circulating-DNA samples out of 7 were found to be BRAF V600E-positive via PD-UVME while classified as negative by conventional ddPCR. Positive samples via conventional ddPCR were also found positive via PD-UVME. All 10 circulating cell-free DNA (cfDNA) samples obtained from normal volunteers were negative via both approaches. Furthermore, preferential enrichment of unmethylated alleles in MAGEA1 promoters using PD-UVME was demonstrated. PD-UVME mutation/methylation enrichment performed prior to ddPCR magnifies low-level mutations or epigenetic changes and increases sensitivity and confidence in the results. It can assist with clinical decisions that hinge on the presence of trace alterations like BRAF V600E.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.