Abstract

Pyrimidine dimer (PD)-DNA glycosylase activity has been reported in both the M. luteus and phage T4 UV endonucleases. In the present studies the T4 PD-DNA glycosylase has been purified close to physical homogeneity using an assay that measures the release of free thymine from UV-irradiated poly ([H5] dT):poly (dA), after the photo-reversal of thymine-thymine dimers. The activity has also been demonstrated in vivo following infection of UV-irradiated E. coli uvr- cells with phage T4. Under these conditions the T4 PD-DNA glycosylase accounts quantitatively for all thymine-containing PD excised from [3H] labeled E. coli DNA. In vitro the T4 PD-DNA glycosylase has an associated AP endonuclease activity that incises UV-irradiated DNA 3 to the apyrimidinic sites created by the glycosylase. However, the glycosylase/AP endonuclease reaction mechanism in vitro does not appear to be a concerted one. In addition, a T4 phage with a temperature-sensitive mutation in the denV gene shows wild-type levels of survival at the permissive temperature, despite the fact that in vitro, extracts of E. coli infected with this mutant show no detectable phage-coded AP endonuclease at 28 degrees C. Thus the exact role of the T4 AP endonuclease in the incision of UV-irradiated DNA dimer in vivo is not clear. The ratio of excised non-containing nucleotides to dimer-containing nucleotides following infection of UV-irradiated E. coli with phage T4 denV+ yields a calculated average repair patch size of approximately 7 nucleotides. In contrast, the calculated average patch size in uninfected E. coli is approximately 70 nucleotides. Thus the extent of excision/resynthesis of UV-irradiated DNA may be determined by the specific mode of incision of the DNA at PD. When uninfected E. coli (uvr+) is exposed to UV radiation, a fraction of the excised thymine-containing PD contain photolabile thymine, suggesting the presence of PD-DNA glycosylase in E. coli. The role of this putative activity in the metabolism of UV-irradiated DNA is under investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.