Abstract
Pyrimidine deoxyribonucleotide metabolism was investigated during maturation and germination of white spruce somatic embryos by following the metabolic fate of [2‐14C]cytidine, [2‐14C]deoxycytidine and [2‐14C]thymidine. The de‐novo pathway of deoxyribonucleotides was estimated indirectly, by the ability of the tissue to incorporate cytidine into DNA after conversion to dCTP. The salvage pathway was estimated by the utilization of labelled cytidine, deoxycytidine and thymidine for synthesis of deoxyribonucleotides and nucleic acids. Utilization of cytidine for DNA synthesis, via the de novo pathway, was always lower than that observed for RNA throughout the course of the experiment. Incorporation of cytidine into RNA was found to occur either directly, after conversion to CTP, mediated by the enzymes cytidine kinase, nucleoside monophosphate kinase and nucleoside diphosphate kinase, or indirectly, after conversion to UTP via uridine and UMP. Active incorporation of uridine into RNA of white spruce‐cultured cells was demonstrated previously. Salvage of deoxycytidine and thymidine was operative in maturing and germinating white spruce somatic embryos, as label from both compounds was recovered in nucleotides and DNA. However, the utilization of these precursors by the cells was different. Salvage of deoxycytidine was always higher than that observed for thymidine, which was extensively catabolized to CO2 at all stages of embryo development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.