Abstract

New donor–π–acceptor pyrimidine-based dyes comprising an amide moiety as an anchoring group have been designed. The dyes were synthesized by sequential procedures based on the microwave-assisted Suzuki cross-coupling and bromination reactions. The influence of the dye structure and length of π-linker on the photophysical and electrochemical properties and on the photovoltaic effectiveness of dye-sensitized solar cells was investigated. An increase in efficiency with a decrease in the length of π-linker was revealed. The D1 dye with only one 2,5-thienylene-linker provided the highest power conversion efficiency among the fabricated dye sensitized solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.