Abstract

Auditory neuropathy due to toxicity mechanism of pyridoxine has not yet been fully documented. Therefore, the present study explored a direct mechanism underlying the effects of pyridoxine on auditory neuropathy in organ of Corti (OC) explants ex vivo and cochlear neuroblast cell line, VOT-33 in vitro. Primary OC explants containing spiral ganglion neurons and cultured VOT-33 cells were treated with pyridoxine. In nerve fiber of primary OC explants, pyridoxine decreased staining for NF200, a neuro-cytoskeletal protein. We also found that pyridoxine-induced VOT-33 apoptosis, as indicated by accumulation of the sub-G0/G1 fraction, caspase-3 activation, and PARP cleavage. In addition, pyridoxine induced reactive oxygen species (ROS) generation and alteration of mitochondrial membrane potential transition (MPT), including Bcl-2 family protein expression and consequently Ca2+ accumulation and changes of endoplasmic reticulum (ER) stress-related protein expression such as phospho-PERK, caspase-12, Grp78, and CHOP. Pyridoxine preferentially induced severe cell death on nerve fiber in primary OC explants and markedly increased apoptotic cell death via mitochondria-mediated ER stress in VOT-33 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.