Abstract

The stereochemistry for hydrogen removal from pyridoxamine 5'-phosphate with liver pyridoxine (pyridoxamine)-5'-phosphate oxidase was examined to determine whether or not there are significant steric constraints at the substrate region of the active site of the oxidase. For this, pyridoxal 5'-phosphate was reduced with tritium-labeled sodium borohydride in ammoniacal solution to yield racemically labeled [4',4'-3H]pyridoxamine 5'-phosphate which was then chemically or enzymatically oxidized to [4'-3H]pyridoxal 5'-phosphate. This latter was used as coenzyme with either L-aspartate (L-glutamate) aminotransferase and L-glutamate or L-glutamate decarboxylase and alpha-methyl-DL-glutamate to generate [4'-3H]pyridoxamine 5'-phosphate known to be labeled in the R-position. Reaction of the oxidase with the pro-R as well as the pro-R,S-labeled substrates followed by isolation of [4'-3H]pyridoxal 5'-phosphate and 3H2O revealed only half the radioactivity was abstracted from the original substrate in either case. Hence, the oxidase is not stereospecific and equally well catalyzes removal of either pro-R or pro-S hydrogen from the 4-methylene of pyridoxamine 5'-phosphate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.