Abstract

Several nucleoside antibiotics are structurally characterized by a 5′′-amino-5′′-deoxyribose (ADR) appended via a glycosidic bond to a high-carbon sugar nucleoside, (5′S,6′S)-5′-C-glycyluridine (GlyU). GlyU is further modified with an N-alkylamine linker, the biosynthetic origins of which have yet to be established. By using a combination of feeding experiments with isotopically labeled precursors and characterization of recombinant proteins from multiple pathways, the biosynthetic mechanism for N-alkylamine installation for ADR-GlyU-containing nucleoside antibiotics has been uncovered. The data reveal S-adenosyl-l-methionine (AdoMet) as the direct precursor of the N-alkylamine, but unlike conventional AdoMet- or decarboxylated AdoMet-dependent alkyltransferases, the reaction is catalyzed by a pyridoxal-5′-phophosate (PLP)-dependent aminobutyryltransferase (ABTase) using a stepwise γ-replacement mechanism that couples γ-elimination of AdoMet with aza-γ-addition onto the disaccharide alkyl acceptor. In addition to utilizing a conceptually different strategy for AdoMet-dependent alkylation, the newly discovered ABTases require a phosphorylated disaccharide alkyl acceptor, revealing a cryptic intermediate in the biosynthetic pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call