Abstract

Insulin resistance and autonomic imbalance are important pathological processes in metabolic syndrome–induced cardiac remodeling. Recent studies determined that disruption of mitochondrial cristae shape is associated with myocardial ischemia; however, the change in cristae shape in metabolic syndrome–induced cardiac remodeling remains unclear. This study determined the effect of pyridostigmine (PYR), which reversibly inhibits cholinesterase to improve autonomic imbalance, on high-fat diet (HFD)–induced cardiac insulin resistance and explored the potential effect on the shape of mitochondrial cristae. Feeding of a HFD for 22 weeks led to an irregular and even lysed cristae structure in cardiac mitochondria, which contributed to decreased mitochondrial content and ATP production and increased oxygen species production, ultimately impairing insulin signaling and lipid metabolism. Interestingly, PYR enhanced vagal activity by increasing acetylcholine production and exerted mito-protective effects by activating the LKB1/AMPK/ACC signal pathway. Specifically, PYR upregulated OPA1 and Mfn1/2 expression, promoted the formation of the mitofilin/CHCHD3/Sam50 complex, and decreased p-Drp1 and Fis1 expression, resulting in tight and parallel cristae and increasing cardiac mitochondrial complex subunit expression and ATP generation as well as decreasing release of cytochrome C from mitochondria and oxidative damage. Furthermore, PYR improved glucose and insulin tolerance and insulin-stimulated Akt phosphorylation, decreased lipid toxicity, and ultimately ameliorated HFD-induced cardiac remodeling and dysfunction. In conclusion, PYR prevented cardiac and insulin insensitivity and remodeling by stimulating vagal activity to regulate mitochondrial cristae shape and function in HFD-induced metabolic syndrome in mice. These results provide novel insights for the development of a therapeutic strategy for obesity-induced cardiac dysfunction that targets mitochondrial cristae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call