Abstract

Matrix-assisted laser desorption/ionization mass spectrometry has become an indispensable tool for identification of proteins by peptide mass-fingerprint analysis. Selection of the matrix, addition of matrix additives, and sample-preparation techniques are known to affect the quality of the spectra and hence protein identification. We investigated the effect of pyridine as matrix additive for the commonly used crystalline matrix alpha-cyano-4-hydroxycinnamic acid (CCA), forming a pyridinium based ionic liquid matrix, on the mass spectra of synthetic peptides and tryptic protein digests. Beside the equimolar mixture of CCA and pyridine, the effect of addition of substoichiometric amounts of the base to the acid was tested. Optimum results in terms of signal-to-noise ratios, reduction of chemical noise, and reduced formation of alkali adducts and matrix clusters were observed for the matrix CCA-pyridine in the molar ratio 2:1. The optimized ionic liquid matrix was used for identification of tryptic digests of six model proteins and for identification of a protein extracted from a two-dimensional gel with the proteome of the bacterium Corynebacterium glutamicum, and shown to facilitate protein identification, yielding higher scores and increased sequence coverage compared with pure CCA. Thus CCA-Py 2:1 is a potential alternative for identification and characterization of proteins by peptide mass-fingerprint analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.