Abstract
It is important to find a way for separation of concerned chemicals from product mixture after reaction, in order to avoid spreading harmful chemicals to society. The homogeneous nature of DMAP-catalyzed acylation still suffers from the problems of catalyst separation and/or residual DMAP contamination. DMAP causes acute dermal toxicity, whereas the corresponding DMAP salt exhibits only slight irritation to the skin. Very recently, we found that the DMAP saccharinate salt is also great recyclable catalyst, whose acylation of alcohols has been successfully and effectively carried out 10 times without loss in activity. This report covers our comprehensive studies on using the pyridinium saccharinate salts as efficient recyclable acylation catalysts including 4-N,N-dimethylaminopyridinium saccharinate (A), 4-(1-pyrrolidinyl) pyridinium saccharinate (B), 2-N,N-dimethylaminopyridinium saccharinate (C), and pyridinium saccharinate (D). Their structure and reactivity have been studied. The salts A, C, and D contain very interesting seven-membered synthon showing multiple H-bonding interactions for pair of pyridinium cation and saccharinate anion in the solid state. The salt B exhibits H-bonding interaction of N(sac) … H–N(py) in the solid state, instead of seven-membered synthon. The catalytic reactivity studies show that salts A and B are both very effective, with salt B even better in reactivity, and are both recyclable in the esterification of a variety of alcohols, under solvent-free and base-free conditions at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.