Abstract

In this work, pyridinic-nitrogen-dominated nitrogen doped graphene with Cu incorporation (Cu/NG) are prepared via a facile and effective process. In prepared nitrogen doped graphene (NG), high nitrogen content up to 13.5 wt% was achieved and pyridinic-nitrogen dopant enriched to 11.9 at.%. Cu nanoparticles can be highly stabilized by NG materials and the stabilized Cu loading is linearly correlated with the pyridinic nitrogen content in NG. With Cu/NG as the catalyst and 2,2,6,6-tetramethyl-piperidin-1-oxyl (TEMPO) as co-catalyst, 5-hydroxymethylfurfural (HMF) was oxidized to 2,5-diformylfuran (DFF) in the new developed catalytic system under relative mild conditions (70 °C, 8 h) with high HMF conversion (99.8%) and DFF yield (99.2%). By various characterization and experimental data, Cu-N-C nano-centers were speculated to be the actives sites in catalytic oxidation of HMF. Comparison of high-resolution XPS spectra of N 1s between NG and Cu/NG material indicates the existence of strong interaction between Cu nanoparticles and pyridinic N. The developed catalytic system showed high efficiency in HMF oxidation and Cu/NG can be recycled for eight times without any obvious Cu leaching and catalytic activity loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.