Abstract

The utilization of low-energy sunlight to produce renewable fuels is a subject of great interest. Here we report the first example of metal chalcogenide quantum dots (QDs) capped with a pyridinethiolate carboxylic acid (pyS-COOH) for red-light-driven H2 production in water. The precious-metal-free system is robust over 240 h, and achieves a turnover number (TON) of 43910±305 (vs Ni) with a rate of 31570±1690 μmol g-1 h-1 for hydrogen production. In contrast to the inactive QDs capped with other thiolate ligands, the CdSe-pyS-COOH QDs give a significantly higher singlet oxygen quantum yield [ΦΔ (1O2)] in solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.