Abstract

Low molecular weight gelators have recently been used as a template to construct novel kind of composite materials of different shape or structures such as helix, fibers, tape or tube through the electrostatic interaction between gelators and the intermediate molecules. In this article, we intricately apply the non-electrostatic interaction between gelator and fluorescent molecules to fabricate the gel fibers. To achieve our goal, we have intentionally designed pyridine containing cholesterol-based gelators 1– 3 by keeping one thing in our mind that during the formation of the stacking column the pyridine moieties will be arranged like a spiral staircase around the cholesterol column. The gelation properties of these three gelators are tested in different solvents including sublimable solvents like naphthalene and the gelator 1 has emerged as a ‘supergelator’. The morphologies strongly depend on the process of solvent removal from the gel state and the stabilities of gel have been tuned by the added metal ions like Ag(I) by using metal–ligand interaction. Lastly, we have decorated the gel fibers obtained from gelator 1 with fluorescent molecules like tetraphenyl porphyrin Zn(II) [ 4·H and 4·Zn] having photopolymerizable unit at the end of tether groups and the modified fibers are well characterized by UV–vis absorption spectroscopy, confocal laser scanning microscopy as well as transmission electron microscopy. This is a novel example of decoration of gel fibers with fluorescent molecules and the process will offer an alternate application in photochemical and electrochemical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.