Abstract
Nitrogen is one of the most common heteroatom appearing in heterocyclic aromatic compounds (HACs) as well as the frequently applied dopant in graphene nanoflakes/nanoribbons. The pyridine moiety is an intuitive and stable common feature of these compounds; but interestingly, using density functional theory calculations, we found that the N-hydrogenated pyridine moiety could be even more stable in large HACs and in N-doped graphene nanoflakes considering their formation reaction energies. The hydrogenation reaction of the pyridine moiety was calculated to be exothermic for models of four and more fused aromatic rings with specific substitutional positions of nitrogen. This theoretical investigation provides energetic and spectroscopic hints to the existence of the N-hydrogenated pyridine moiety under proper conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.