Abstract

While cobaloximes have been protagonists in the molecular (photo)catalytic hydrogen evolution reaction field, researchers originally shed light on the catalytically active metallic center. However, the specific chemical environment of cobalt, including equatorial and axial ligation, has also a strong impact on the catalytic reaction. In this article, we aim to demonstrate how pyridine vs. imidazole axial ligation of a cobaloxime complex covalently grafted on graphene affects the hydrogen evolution reaction performance in realistic acidic conditions. While pyridine axial ligation mirrors a drastically superior electrocatalytic performance, imidazole exhibits a remarkable long-term stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.