Abstract
In the long-day plant Spinacia oleracea changes in the pool size of pyridine nucleotides have been followed under different photoperiodic conditions. In short days (vegetative state), the dark and light phases of the cycle are characterized by specific reciprocal changes in NAD and NADP pool sizes. As a consequence, the ratios of NADH/NAD+NADH and NADPH/NADP+NADPH, which are respectively considered to represent the catabolic and anabolic state of metabolism, also show a characteristic pattern. Upon transfer to continuous light, i.e. during floral induction, a decrease in anabolic metabolism is paralleled by an increase in catabolic metabolism. In the floral state, both the catabolic and the anabolic couples of the pyridine nucleotides are considerably depressed, possibly reflecting the enhanced senescence of induced leaves. The results are discussed in relation to the involvment of the nucleotides in stoichiometric coupling of metabolic compartments at the cellular level in response to environmental signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.