Abstract

Here we present simple fluorophores based on the pyridine core, obtained with straightforward synthetic methodologies. These compounds present in solution absorption maxima in the UV region and fluorescence emission of between 300 and 450 nm, depending on the solvent and chemical structure of the fluorophore. The nature of the solvent was shown to play a fundamental role in their excite-state deactivation, which allowed successful exploration of these compounds as optical sensors for benzene and fuel adulteration in gasoline. In ethanolic solution, upon the addition of benzene, in general the fluorophores presented fluorescence quenching, where a linear correlation between the emission intensity and the amount of benzene (quencher) was observed. In addition, the application of an optical sensor for the detection of fuel adulteration in commercial standard and premium gasoline was successfully presented and discussed. Theoretical calculations were also applied to better understand the solvent–fluorophore interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.