Abstract
In 2009, pyrethroid resistance was confirmed for seven "annual bluegrass weevil" Listronotus maculicollis Kirby (Coleoptera: Curculionidae) adult populations from southern New England. The mechanisms responsible for conferring this resistance were unknown. In this study, topical application bioassays with bifenthrin and bifenthrin combined with synergists affecting three detoxification systems were conducted on four field-collected adult populations of L. maculicollis from Connecticut to determined whether cytochrome P450 monooxgenases (P450s), glutathione S-transferases (GSTs), and/or carboxyl-esterases (COEs) mediated metabolic detoxification. Because a susceptible L. maculicollis laboratory strain does not exist, the most susceptible field-collected population (New Haven) provided a baseline against which all other populations were compared. In the population with the lowest resistance (Norwich), only detoxification by P450s was significant. Detoxification in the population with the second highest level of resistance (Stamford) involved both P450s and GSTs. Detoxification in the population with the highest level of resistance (Hartford) involved P450s, GSTs, and COEs. This study suggests that enzyme-mediated metabolic detoxification plays an important role in annual bluegrass weevil pyrethroid resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.