Abstract

Pyrene-substituted ethenes, 1,2,2-tripheny-1-pyrenylethene (TPPyE) and 1,2-diphenyl-1,2-dipyrenylethene (DPDPyE), are synthesized and characterized. Whereas they are weakly emissive in solution they become strong emitters when aggregated in the condensed phase. In contrast to the general observation that excimer formation quenches the light emission of fluorophores, TPPyE and DPDPyE exhibit efficient excimer emissions in the solid state with high fluorescence quantum yields up to 100%. The π–π intermolecular interactions between the pyrene rings, coupled with multiple C–H⋯π hydrogen bonds, efficiently restrict intramolecular rotations, which block the nonradiative energy decay channel, and hence make the dye molecules highly emissive in the solid state. Non-doped organic light-emitting diodes using TPPyE and DPDPyE as emitters are fabricated, which give green light at low turn-on voltages (down to 3.2 V) with maximum luminance and power, current, and external quantum efficiencies of 49830 cd m−2, 9.2 lm W−1, 10.2 cd A−1 and 3.3%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.