Abstract

Rabbit skeletal alphaalphatropomyosin was specificially labeled at cysteine 190 with the fluorescent reagent, N-(1-pyrene)maleimide. Spectroscopically different products were obtained by labeling at pH 6.0 (PyrI-alphaalphaTm) or pH 7.5 (PyrII-alphaalphaTm). PyrII-alphaalphaTm results from a secondary reaction between the N-(1-pyrene)succinimido moiety at cysteine 190 of PyrI-alphaalphaTm and a lysine group on the same chain, probably lysine 189. Pyrene excimer fluorescence was present in the native state but absent in the unfolded state of both products, thus verifying the proximity of the--SH groups and the chain register model for the structure of tropomyosin. Studies of the guanidinium chloride-dependent unfolding of PyrII-alphaalphaTm showed that loss of excimer fluorescence precedes unfolding, providing evidence for a region of preferential instability in the molecule near cysteine 190. This work suggests that N-(1-pyrene)maleimide could be used to probe both--SH proximity and local conformation in any protein if the presence of two or more proximal--SH groups is suspected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.