Abstract

Pyrene excimer usually serves as a chromogenic unit for developing ratiometric fluorescent sensors. But this study used excimer as a large hydrophobic group to regulate the molecular hydrophobicity, and obtained a new fluorescent sensor, N, N-bi[4(1-pyrene)-butyroyl]ornithine (1), for detection and removal of Fe3+ and Pb2+ from aqueous solutions. The coordination of 1 and Fe3+ in the aqueous solution or even pure water forms removable flocculent precipitates, accompanied by obvious fluorescent quenching of emission spectra. In aqueous solutions containing 40% (v/v) acetonitrile, the special responses exhibit a high selectivity and sensitivity to Fe3+ over other common metal ions. However, in aqueous solutions containing 40% (v/v) dimethylsulfoxide, the probe exhibits the analogous fluorescent quenching responses and the removable flocculent precipitates in the presence Fe3+ and Pb2+. These results indicate that the extremely hydrophobic 1-Fe3+/Pb2+ complexes are not only a supplement to the fluorescent sensing of Fe3+ and Pb2+, but also a requirement to the removal of Fe3+ and Pb2+ from aqueous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.