Abstract
Special attention is given to the development of rapid and sensitive detection of nitroaromatic explosives for homeland security and environmental concerns. As part of our contribution to the detection of nitroaromatic explosives, fluorescent materials (A), (B) and (C) were synthesized from the reaction of 1,2-diaminocyclohexane with pyrene-1-carbaldehyde, anthracene-9-carbaldehyde and 2-hydroxy-1-naphthaldehyde, respectively. The structures of the prepared fluorescent azomethine probes were confirmed using FTIR, 1H-NMR and 13C-NMR spectroscopies. The basis of the study is the use of the synthesized materials as fluorescent probes in the photophysical and fluorescence detection of some nitroaromatic explosives. Emission increases occurred due to aggregation caused by π-π stacking in synthesized azomethines. To measure the nitroaromatic detection capabilities of fluorescence probes, fluorescence titration experiments were performed using the photoluminescence spectroscopy. It was observed that compound A containing pyrene ring provided the best emission intensity-increasing effect due to aggregation with the lowest LOD value (14.96μM) for the sensing of 4-nitrophenol. In compounds B and C, nitrobenzene with the lowest LOD (16.15μM and 23.49μM respectively) caused the most regular emission increase, followed by picric acid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.