Abstract
Molecular photoswitches (e.g., azobenzenes) can reversibly interconvert between their thermodynamically stable and metastable isomers upon light irradiations. However, it remains challenging to integrate both high bidirectional photoconversion and long metastable-state lifetime into a photoswitchable functionality. Here, we introduce pyrazolylazophenyl ethers (pzAzo ethers) as a class of azo photoswitches that provides quantitative (>98 %) trans-cis photoisomerization (365 nm light), near-quantitative (95-96 %) reverse isomerization (532 nm light), and a long cis-isomer half-life of three months. They can be easily synthesized in high yields and readily functionalized at one or both sides with a broad scope of substituent groups. Molecular systems incorporating pzAzo ethers can be endowed with high responsiveness, robust reversibility, and long persistent metastable states. Such superior yet pragmatic azo switches hold high promise for upgraded photoregulation in many light-responsive applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.