Abstract

AbstractPyrazole-substituted pyridines have emerged as versatile bidentate ligands in transition-metal catalysis, providing opportunities to fine-tune reactivity and selectivity beyond what conventional bipyridine ligands can achieve. This review focuses on two representative pyrazolopyridine ligands: 2-(1H-pyrazol-1-yl)pyridine (1-PzPy) and 2-(1H-pyrazol-3-yl)pyridine (3-PzPy). The 1-PzPy series, characterized by a pyrazole ring serving as a weakly coordinating Lewis basic ligand, offer flexibility in ligand binding. Alternatively, the 3-PzPy series provide both L2- and LX-type binding modes, functioning as hydrogen bond donors and σ-donors, respectively. The structural diversity of pyrazolopyridine ligands enables the development of various synthetic strategies, facilitating cross-coupling, cycloaddition, photocatalytic, and asymmetric reactions. This review highlights the roles of these ligands in advancing transition-metal-catalyzed C–C and C–heteroatom bond-forming reactions.1 Introduction2 Synthesis of Pyrazolopyridine Ligands3 Applications of 1-PzPy Ligands4 Applications of 3-PzPy Ligands5 Conclusion

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.