Abstract
To identify compounds inhibiting the activity of the Early Growth Response (EGR)-1 DNA-binding domain, thirty-seven pyrazolines were prepared and their EGR-1 DNA-binding activities were measured. Pharmacophores were derived based on quantitative structure–activity relationship calculations. As compound 2, 1-(5-(4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-3-yl)naphthalen-2-ol, showed the best inhibitory effects against the activity of the EGR-1 DNA-binding domain, the binding mode between compound 2 and EGR-1 was elucidated using in silico docking. The pharmacophores were matched to the binding modes. Electrophoretic mobility shift assays confirmed that compound 2 dose-dependently inhibited TNFα-induced EGR-1-DNA complex formation in HaCaT cells. Reverse transcription-polymerase chain reaction demonstrated that compound 2 effectively reduced the mRNA expression of EGR-1-regulated inflammatory genes, including thymic stromal lymphopoietin (TSLP), interleukin (IL)-1β, IL-6, and IL-31, in TNFα-stimulated HaCaT cells. Therefore, compound 2 could be developed as an agent that inhibits the activity of the EGR-1 DNA-binding domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.