Abstract

Photorhabdus luminescens is a bioluminescent entomopathogenic bacterium that undergoes phenotypic variation and lives in mutualistic association with nematodes of the family Heterorhabditidae. The pair infects and kills insects, and during their coordinated lifecycle, the bacteria produce an assortment of specialized metabolites to regulate its mutualistic and pathogenic roles. As part of our search for new specialized metabolites from the Photorhabdus genus, we examined organic extracts from P. luminescens grown in an amino acid rich medium based on the free amino acid levels found in the circulatory fluid of its common insect prey, the Galleria mellonella larva. Reversed-phase HPLC/UV/MS-guided fractionation of the culture extracts led to the identification of two new pyrazinone metabolites, lumizinones A (1) and B (2), together with two N-acetyl dipeptides (3 and 4). The lumizinones were produced only in the phenotypic variant associated with nematode development and insect pathogenesis. Their chemical structures were elucidated by analysis of one- and two-dimensional NMR and high-resolution ESI-QTOF-MS spectral data. The absolute configurations of the amino acids in 3 and 4 were determined by Marfey’s analysis. Compounds 1–4 were evaluated for their calpain protease inhibitory activity, and lumizinone A (1) showed inhibition with an IC50 value of 3.9 μM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.