Abstract

ABSTRACTPyrazinamide (PZA) plays a crucial role in first-line tuberculosis drug therapy. Unlike other antimicrobial agents, PZA is active against Mycobacterium tuberculosis only at low pH. The basis for this conditional drug susceptibility remains undefined. In this study, we utilized a genome-wide approach to interrogate potentiation of PZA action. We found that mutations in numerous genes involved in central metabolism as well as cell envelope maintenance and stress response are associated with PZA resistance. Further, we demonstrate that constitutive activation of the cell envelope stress response can drive PZA susceptibility independent of environmental pH. Consequently, exposure to peptidoglycan synthesis inhibitors, such as beta-lactams and d-cycloserine, potentiate PZA action through triggering this response. These findings illuminate a regulatory mechanism for conditional PZA susceptibility and reveal new avenues for enhancing potency of this important drug through targeting activation of the cell envelope stress response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call