Abstract
Complexes of dyes and polyelectrolytes have found widespread use in a variety of functional materials and interfaces. Here it is found that upon mixing the anionic dye pyranine and a cationic polyelectrolyte, poly(allylamine-hydrochloride), two different colloidal structures may form. Above a certain concentration of anionic dye, crosslinking of the polyelectrolyte is initiated, and the formation of sheet-like colloidal structures was observed. Addition of hydroxyl ions resulted in the formation of micron-sized spherical colloids. It was also found that the colloidal shape transition was accompanied by a significant red-shift in the fluorescence emission. Combining fluorescence measurements with studies of the particle size with time, it was found that red-shift was related to the crosslinking of the dye and the polyelectrolyte, and was not influenced significantly by the aggregation and particle growth. Further information about the colloidal behavior and stability was obtained by letting droplets dry and follow the kinetics of this process. It was found that the particles collapsed near the contact line and formed a ring deposit, in agreement with previous studies. However, unlike previous studies, the thickness of the ring deposit did not grow significantly with time, due to the peculiar process of formation found here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.