Abstract
Schizophrenia is a disabling psychiatric disease characterized by symptoms including hallucinations, delusions, social withdrawal, loss of pleasure, and inappropriate affect. Although schizophrenia is marked by dysfunction in dopaminergic and glutamatergic signaling, it is not presently clear how these dysfunctions give rise to symptoms. The aberrant salience hypothesis of schizophrenia argues that abnormal attribution of motivational salience to stimuli is one of the main contributors to both positive and negative symptoms of schizophrenia. The proposed mechanisms for this hypothesis are overactive striatal dopaminergic and hypoactive glutamatergic signaling. The current study assessed salience attribution in mice (n = 72) using an oddball paradigm in which an infrequent stimulus either co-occurred with shock (conditioned group) or was presented alone (non-conditioned group). Behavioral response (freezing) and electroencephalogram (whole brain and amygdala) were used to assess salience attribution. Mice with pyramidal cell-selective knockout of ionotropic glutamate receptors (GluN1) were used to reproduce a prominent physiological change involved in schizophrenia. Non-conditioned knockout mice froze significantly more in response to the unpaired stimulus than non-conditioned wild-type mice, suggesting that this irrelevant cue acquired motivational salience for the knockouts. In accordance with this finding, low-frequency event-related spectral perturbation was significantly increased in non-conditioned knockout mice relative to both conditioned knockout and non-conditioned wild-type mice. These results suggest that pyramidal cell-selective GluN1 knockout leads to inappropriate attribution of salience for irrelevant stimuli as characterized by abnormalities in both behavior and brain circuitry functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.