Abstract

Mitigating the impacts of landslides and planning resilient infrastructure necessitates assessing the exposure to this hazard through, for example, susceptibility mapping involving the spatial integration of various contributing factors. Here, we introduce PyLandslide, an open-source Python tool that leverages machine learning and sensitivity analysis to quantify the weights of various contributing factors, estimate the associated uncertainties, and generate susceptibility maps. We apply PyLandslide to the case of rainfall-triggered landslides in Italy driven by historical precipitation data (1981–2023) and nine climate projections for the mid-century (2041–2050). Results highlight distance to roads as the most influential factor in determining landslide susceptibility in Italy, followed by slope. Our findings reveal an overall reduction in susceptibility in the mid-century compared to the historical period; however, the directional changes vary spatially. Uncertainty analysis should play a central role in decision-making on landslides, where weights are intricately linked to investments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call