Abstract

Mechanical stimuli such as fluid shear and cyclic tension force induced extracellular adenosine triphosphate (ATP) release in osteoblasts. In particular, cyclic tension force-induced ATP enhances bone formation through P2X7 activation. Proline-rich tyrosine kinase 2 (PYK2) mediate osteoblasts differentiation is induced by mechanical stimuli. Furthermore, activation of PYK2 also was a response to integrin by mechanical stimuli. Extracellular matrix protein (ECMP)s, which are important factors for bone formation are expressed by osteoblasts. However, the effect of the interaction of 2’(3)-Ο-(4-Benzoylbenzoyl) adenosine-5’-triphosphate (BzATP), which is the agonist of the mechanosensitive receptor P2X7, with PYK2 on ECMP production is poorly understood. Thus, our purpose was to investigate the effects of PYK2 on BzATP-induced ECMP production in osteoblasts.BzATP increased phospho-PYK2 protein expression on days 3 and 7 of culture. Furthermore, the PYK2 inhibitor PF431394 inhibited the stimulatory effect of BzATP on the expression of type I collagen, bone sialoprotein and osteocalcin expression. PF431396 did not inhibit the stimulatory effect of BzATP on osteopontin (OPN) mRNA expression.These results suggest that mechanical stimuli activate P2X7 might induce ECMPs expression through PYK2 except in the case of OPN expression. Altogether, mechanical stimuli-induced ECMPs production might be implicated by extracellular ATP secretion or integrin via PYK2 activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.