Abstract
In addition to the already described ligand L4a, two pyclen-based lanthanide chelators, L4b and L4c, bearing two specific picolinate two-photon antennas (tailor-made for each targeted metal) and one acetate arm arranged in a dissymmetrical manner, have been synthesized, to form a complete family of lanthanide luminescent bioprobes: [EuL4a], [SmL4a], [YbL4b], [TbL4c], and [DyL4c]. Additionally, the symmetrically arranged regioisomer L4a' was also synthesized as well as its [EuL4a'] complex to highlight the astonishing positive impact of the dissymmetrical N-distribution of the functional chelating arms. The investigation clearly shows the high performance of each bioprobe, which, depending on the complexed lanthanide, could be used in various applications. Each presents high brightness, quantum yields, and lifetimes. Staining of the complexes into living human breast cancer cells was observed. In addition, in vivo two-photon microscopy was performed for the first time on a living zebrafish model with [EuL4a]. No apparent toxicity was detected on the growth of the zebrafish, and images of high quality were obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.