Abstract

Thermally aged nickel based Alloy 600 was investigated to evaluate the effects of long-term thermal aging and triaxial stress on primary water stress corrosion crack initiation behavior. Long-term thermal aging was simulated by heat treatment at 400 °C, a temperature that does not cause excessive formation of second phases that cannot form in nuclear power plant service conditions. Triaxial stress was applied by a round notch in the gauge length of some test specimen; other specimens were smooth. Slow strain rate tests (SSRT) monitored by the direct current potential drop method were conducted to evaluate stress corrosion crack initiation susceptibility of the thermally aged specimens in the primary water environment. For smooth specimens (which experience uniaxial stress), the susceptibility of those thermally aged for the equivalent of 10-years was the highest, while the susceptibility of the as-received specimens was the lowest. However, for the notched specimens (which experience triaxial stress), the specimens thermally aged for the equivalent of 20-years showed the highest susceptibility, while the as-received specimens showed the lowest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call