Abstract

In photovoltaic applications, many previous research works have focused on pulsewidth modulation (PWM) resonant converters in order to achieve a high efficiency with a wide input voltage range. Conventional approaches utilized symmetric boosting modulation at the secondary side rectifier to obtain a symmetric operation, and they utilized two boosting modes in a switching period. Among various rectifier structures, the voltage doubler structure has a strong advantage due to a small number of components. However, it suffers from serious hard switching losses in the secondary side rectifier. In this paper, a new converter with a novel asymmetrical modulation is proposed and verified. The strong point of the proposed converter is that it eliminates hard switching turn- on losses from the rectifier, while maintaining the minimized number of components. Although the proposed converter adopts an asymmetric modulation, the offset current on the transformer becomes zero inherently. Furthermore, a “forced half resonance” operation of the proposed converter keeps rms current stresses at the same level as conventional converter although it has a higher peak current. Accordingly, the proposed converter achieves a superior efficiency with the minimum number of components at 35–25 V input and 380 V/300 W output specification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call