Abstract

The temporal bone is a part of the lateral skull surface that contains organs responsible for hearing and balance. Mastering surgery of the temporal bone is challenging because of this complex and microscopic three-dimensional anatomy. Segmentation of intra-temporal anatomy based on computed tomography (CT) images is necessary for applications such as surgical training and rehearsal, amongst others. However, temporal bone segmentation is challenging due to the similar intensities and complicated anatomical relationships among critical structures, undetectable small structures on standard clinical CT, and the amount of time required for manual segmentation. This paper describes a single multi-class deep learning-based pipeline as the first fully automated algorithm for segmenting multiple temporal bone structures from CT volumes, including the sigmoid sinus, facial nerve, inner ear, malleus, incus, stapes, internal carotid artery and internal auditory canal. The proposed fully convolutional network, PWD-3DNet, is a patch-wise densely connected (PWD) three-dimensional (3D) network. The accuracy and speed of the proposed algorithm was shown to surpass current manual and semi-automated segmentation techniques. The experimental results yielded significantly high Dice similarity scores and low Hausdorff distances for all temporal bone structures with an average of 86% and 0.755 millimeter (mm), respectively. We illustrated that overlapping in the inference sub-volumes improves the segmentation performance. Moreover, we proposed augmentation layers by using samples with various transformations and image artefacts to increase the robustness of PWD-3DNet against image acquisition protocols, such as smoothing caused by soft tissue scanner settings and larger voxel sizes used for radiation reduction. The proposed algorithm was tested on low-resolution CTs acquired by another center with different scanner parameters than the ones used to create the algorithm and shows potential for application beyond the particular training data used in the study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.