Abstract

A comparative study between the conventional and 2.45 GHz microwave multimode sintering behavior of insulator (α-Al2O3) and semi-conductive ceramic (ZnO) was systematically investigated. The apparent activation energy of nonisothermal sintering was determined by way of the Arrhenius plot of densification data at constant heating rates (CHR) and the concepts of Master Sintering Curves (MSCs), respectively. During microwave densification process, the apparent activation energy was about 90 kJ/mol less than the value for conventional sintering of Al2O3 applying these two estimation methods. However, an opposite result was obtained in the case of ZnO, although its densification process had been also accelerated by microwave as well as Al2O3. The significant differences in activation energy give a good proof of the difference in diffusion mechanism induced by the electromagnetic field underlying microwave sintering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.