Abstract
ObjectivesBiomarkers for psychiatric disorders are critical for patient stratification, premorbid diagnosis and personalized treatment. Our aim is to identify protein biomarkers for anxiety disorders by comparing the synaptic proteomes of a well-established mouse model of high (HAB), normal (NAB) and low (LAB) anxiety-related behavior.MethodsWe have compared protein expression levels using 15N metabolic labeling and quantitative proteomics. Mice were metabolically labeled through feeding with a 15N-enriched diet. Synaptosomes from unlabeled HAB and LAB mice were then compared with synaptosomes from 15N labeled NAB mice by quantitative mass spectrometry. Protein expression differences were validated with Western blots, enzymatic assays and in silico pathway analysis.ResultsWe have identified numerous protein expression differences between HAB and LAB synaptosome proteomes. We observed alterations in energy metabolism pathways such as the Krebs cycle as well as in mitochondrial function. Furthermore, we detected changes in transport and phosphorylation processes.ConclusionsWe present an accurate proteomics platform for biomarker discovery in psychiatric disorders. We identified candidate biomarkers and pathways involved in anxiety pathophysiology. Our data provide the basis for the establishment of a biomarker panel that will shed light on anxiety pathophysiology and can be applied for optimal therapeutic intervention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.