Abstract
Correlations for bubble point pressure, solution gas–oil ratio (GOR), oil formation volume factor (OFVF) (for both saturated and undersaturated crude) and viscosity (for both saturated and undersaturated crude) have been developed for Indian (west coast) crude using Artificial Neural Networks (ANN). Detailed comparison has also been made with various important correlations currently available in the literature. Sensitivity analysis of the developed models was also performed to determine the relative importance of various input parameters. The training scheme used here is different from those used previously for developing ANN models. Bayesian regularization technique was used to ensure generalization and prevent over fitting. Also genetic algorithm (real coded with parent-centric crossover) was used coupled with a local optimizer (Marquardt–Levenberg) to obtain the global optimum network weights. It was found that the developed models outperformed most other existing correlations by giving significantly lower values of average absolute relative error for the parameters studied. This study shows highly favorable results which can be integrated in most reservoir modeling software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.