Abstract

Nanozymes have significant advantages over natural enzymes. The intrinsic peroxidase-like activity of Pt-based nanomaterials can be enhanced by alloying with other transition metals, such as Ru, that have great catalytic activity. In this study, we used polyvinylpyrrolidone (PVP) to synthesize well-dispersed and homogeneous nanostructures. PVP-stabilized Pt-Ru nanozymes (PVP/PtRu NZs) were synthesized and characterized. The PVP/PtRu NZs had an average size of 3.54 ± 0.84 nm and exhibited an intense peroxidase-like activity. The PVP/PtRu NZs were used as peroxidase mimics for colorimetric and fluorometric glucose determination by the glucose oxidase and PVP/PtRu NZs cascade reaction. In the colorimetric assay, the linearly detectable range was 0.25–3.0 mM, with an R2 and limit of detection (LOD) of 0.988 and 138 μM, respectively. In the fluorometric assay, a linear relationship was found when the glucose concentration was between 5.0 and 300 μM (R2 = 0.997), with an LOD of 1.11 μM. Compared to the colorimetric assay, the fluorometric assay had greater sensitivity and a lower detection limit for the determination of glucose. Moreover, the PVP/PtRu NZs had high storage stability over a month and great recovery values in human serum and artificial urine, with a range of 94–106 %. From these results, PVP/PtRu NZs are expected to be used as promising peroxidase mimics in various fields such as biosensing, pharmaceutical processing, and the food industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call