Abstract
As in most applications of nanotechnology speed and precision are important requirements for getting good topographical maps of material surfaces using Scanning Tunneling Microscopes (STM) and Atomic Force Microscopes (AFM). Many STMs and AFMs use Piezoelectric tubes for scanning and positioning with nanometer resolution. In this work a piezoelectric tube of the type typically used in STMs and AFMs is considered. Scanning using this piezoelectric tube is hampered by the presence of a low- frequency resonance mode that is easily excited to produce unwanted vibrations. The presence of this low-frequency resonance mode restricts the scanning speed of the piezoelectric tube. Concept of a Positive Velocity and Position Feedback (PVPF) controller is introduced and a controller is designed to dampen the effect of the undesired first resonance mode. To achieve good precision, specific control signals are designed for the closed loop system to track a raster pattern. Experimental results revel a significant damping of the resonance mode of interest, and consequently, a good tracking performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.