Abstract

Polyvinylpyrrolidone-stabilized heteropolyacids (PVP–HPAs) are synthesized by self-assembling in alcohol. The structure of PVP–HPAs is determined by various characteristic techniques. HPAs can protonate PVP to form polymeric cations. In turn, the protonated PVP interacts strongly with the heteropolyanion by forming an ionic liquid (IL)-like structure. The self-assembling separation and recyclability characteristics are related to the PVP's IL-like structure. The catalyzing performance of PVP–HPAs varies with the species of HPA and the content of PVP. The optimized PVP–H4SiW12O40·5H2O (HSiW) (1/5 : 3/4) gives more than 60% conversion of cellulose and complete conversion of highly selective cellobiose into butylglucosides. The optimized PVP–HSiW is separated directly by centrifugation and retains the activity without any post-treatment during recycling. The deactivation of PVP–HPAs is related to the loss of the catalyst during recycling. The functional mechanism of the IL-like structure is explored in this control experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.