Abstract
In this paper, we developed a simple method to detect fungi toxin (ochratoxin A) produced by Aspergillus Ochraceus and Penicillium verrucosumm, utilizing graphene oxide as quencher which can quench the fluorescence of FAM (carboxyfluorescein) attached to toxin-specific aptamer. By optimizing the experimental conditions, we obtained the detection limit of our sensing platform based on bare graphene oxide to be 1.9 μM with a linear detection range from 2 μM to 35 μM. Selectivity of this sensing platform has been carefully investigated; the results showed that this sensor specifically responded to ochratoxin A without interference from other structure analogues (N-acetyl- l-phenylalanine and warfarin) and with only limited interference from ochratoxin B. Experimental data showed that ochratoxin A as well as other structure analogues could adsorb onto the graphene oxide. As compared to the non-protected graphene oxide based biosensor, PVP-protected graphene oxide reveals much lower detection limit (21.8 nM) by two orders of magnitude under the optimized ratio of graphene oxide to PVP concentration. This sensor has also been challenged by testing 1% red wine containing buffer solution spiked with a series of concentration of ochratoxin A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.